Decentralized data-driven estimation of generator rotor speed and inertia constant based on adaptive unscented Kalman filter
نویسندگان
چکیده
This paper proposes an online decentralized and data-driven method for synchronous generator rotor speed inertia estimation. First, analytical relationship between the terminal voltage/current phasors its internal is derived using Thevenin equivalent. The parameters of latter are obtained via a recursive estimator, which allows us to estimate generator’s from without need any information. Second, we reformulate equivalent swing equation into Kalman filter form, enables use priori-estimated along with measured real reactive power injections obtain each generator. achieved through adaptive unscented filter. We demonstrate that bus frequency approximate estimation by existing methods leads large biases/errors. Numerical simulations carried out on IEEE 39-bus Texas 2000-bus systems reveal our proposed consistently more accurate than methods. Moreover, insensitive both type location system disturbances, it robust different levels measurement noise.
منابع مشابه
Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملAerodynamic parameter estimation using adaptive unscented Kalman filter
Purpose – The purpose of this paper is to estimate aerodynamic parameters accurately from flight data in the presence of unknown noise characteristics. Design/methodology/approach – The introduced adaptive filter scheme is composed of two parallel UKFs. At every time-step, the master UKF estimates the states and parameters using the noise covariance obtained by the slave UKF, while the slave UK...
متن کاملAdaptive Unscented Kalman Filter using Maximum Likelihood Estimation
The purpose of this study is to develop an adaptive unscented Kalman filter (UKF) by tuning the measurement noise covariance. We use the maximum likelihood estimation (MLE) and the covariance matching (CM) method to estimate the noise covariance. The multi-step prediction errors generated by the UKF are used for covariance estimation by MLE and CM. Then we apply the two covariance estimation me...
متن کاملA Hybrid Adaptive Unscented Kalman Filter Algorithm
In order to overcome the limitation of the traditional adaptive Unscented Kalman Filtering (UKF) algorithm in noise covariance estimation for statement and measurement, we propose a hybrid adaptive UKF algorithm based on combining Maximum a posteriori (MAP) criterion and Maximum likelihood (ML) criterion, in this paper. First, to prevent the actual noise covariance deviating from the true value...
متن کاملFuzzy Adaptive Variational Bayesian Unscented Kalman Filter
We consider the problem of nonlinear filtering under the circumstance of unknown covariance statistic of the measurement noise. A novel adaptive unscented Kalman filter (UKF) integrating variational Bayesian methods and fuzzy logic techniques is proposed in this paper. It is called fuzzy adaptive variational Bayesian UKF (FAVBUKF). Firstly, the sufficient statistics of the measurement noise var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Electrical Power & Energy Systems
سال: 2022
ISSN: ['1879-3517', '0142-0615']
DOI: https://doi.org/10.1016/j.ijepes.2021.107853